Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

Identifieur interne : 000178 ( Main/Exploration ); précédent : 000177; suivant : 000179

Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.

Auteurs : Tao Zhao [Suède] ; Karolin Axelsson [Suède] ; Paal Krokene [Norvège] ; Anna-Karin Borg-Karlson [Suède]

Source :

RBID : pubmed:26302987

Descripteurs français

English descriptors

Abstract

Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems.

DOI: 10.1007/s10886-015-0617-3
PubMed: 26302987


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.</title>
<author>
<name sortKey="Zhao, Tao" sort="Zhao, Tao" uniqKey="Zhao T" first="Tao" last="Zhao">Tao Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden. taozhao@kth.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Axelsson, Karolin" sort="Axelsson, Karolin" uniqKey="Axelsson K" first="Karolin" last="Axelsson">Karolin Axelsson</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krokene, Paal" sort="Krokene, Paal" uniqKey="Krokene P" first="Paal" last="Krokene">Paal Krokene</name>
<affiliation wicri:level="1">
<nlm:affiliation>Norwegian Institute of Bioeconomy Research, 115, 1431, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Norwegian Institute of Bioeconomy Research, 115, 1431, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Borg Karlson, Anna Karin" sort="Borg Karlson, Anna Karin" uniqKey="Borg Karlson A" first="Anna-Karin" last="Borg-Karlson">Anna-Karin Borg-Karlson</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26302987</idno>
<idno type="pmid">26302987</idno>
<idno type="doi">10.1007/s10886-015-0617-3</idno>
<idno type="wicri:Area/Main/Corpus">000172</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000172</idno>
<idno type="wicri:Area/Main/Curation">000172</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000172</idno>
<idno type="wicri:Area/Main/Exploration">000172</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.</title>
<author>
<name sortKey="Zhao, Tao" sort="Zhao, Tao" uniqKey="Zhao T" first="Tao" last="Zhao">Tao Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden. taozhao@kth.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Axelsson, Karolin" sort="Axelsson, Karolin" uniqKey="Axelsson K" first="Karolin" last="Axelsson">Karolin Axelsson</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krokene, Paal" sort="Krokene, Paal" uniqKey="Krokene P" first="Paal" last="Krokene">Paal Krokene</name>
<affiliation wicri:level="1">
<nlm:affiliation>Norwegian Institute of Bioeconomy Research, 115, 1431, Ås, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Norwegian Institute of Bioeconomy Research, 115, 1431, Ås</wicri:regionArea>
<wicri:noRegion>Ås</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Borg Karlson, Anna Karin" sort="Borg Karlson, Anna Karin" uniqKey="Borg Karlson A" first="Anna-Karin" last="Borg-Karlson">Anna-Karin Borg-Karlson</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Coleoptera (microbiology)</term>
<term>Fungi (physiology)</term>
<term>Pentanols (metabolism)</term>
<term>Pheromones (metabolism)</term>
<term>Picea (microbiology)</term>
<term>Picea (parasitology)</term>
<term>Plant Bark (microbiology)</term>
<term>Plant Bark (parasitology)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Champignons (physiologie)</term>
<term>Coléoptères (microbiologie)</term>
<term>Pentanols (métabolisme)</term>
<term>Phéromones (métabolisme)</term>
<term>Picea (microbiologie)</term>
<term>Picea (parasitologie)</term>
<term>Symbiose (MeSH)</term>
<term>Écorce (microbiologie)</term>
<term>Écorce (parasitologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Pentanols</term>
<term>Pheromones</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Coléoptères</term>
<term>Picea</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Coleoptera</term>
<term>Picea</term>
<term>Plant Bark</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Pentanols</term>
<term>Phéromones</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Picea</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Picea</term>
<term>Plant Bark</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26302987</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.</ArticleTitle>
<Pagination>
<MedlinePgn>848-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-015-0617-3</ELocationID>
<Abstract>
<AbstractText>Tree-killing bark beetles depend on aggregation pheromones to mass-attack their host trees and overwhelm their resistance. The beetles are always associated with phytopathogenic ophiostomatoid fungi that probably assist in breaking down tree resistance, but little is known about if or how much these fungal symbionts contribute to the beetles' aggregation behavior. In this study, we determined the ability of four major fungal symbionts of the spruce bark beetle Ips typographus to produce beetle aggregation pheromones. The fungi were incubated on Norway spruce Picea abies bark, malt agar, or malt agar amended with 0.5% (13)C glucose. Volatiles present in the headspace of each fungus were analyzed for 7 days after incubation using a SPME autosampler coupled to a GC/MS. Two Grosmannia species (G. penicillata and G. europhioides) produced large amounts of 2-methyl-3-buten-2-ol (MB), the major component in the beetles' aggregation pheromone blend, when growing on spruce bark or malt agar. Grosmannia europhioides also incorporated (13)C glucose into MB, demonstrating that the fungi can synthesize MB de novo using glucose as a carbon source. This is the first clear evidence that fungal symbionts of bark beetles can produce components in the aggregation pheromone blend of their beetle vectors. This provides new insight into the possible ecological roles of fungal symbionts in bark beetle systems and may deepen our understanding of species interactions and coevolution in these important biological systems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden. taozhao@kth.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Axelsson</LastName>
<ForeName>Karolin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krokene</LastName>
<ForeName>Paal</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Norwegian Institute of Bioeconomy Research, 115, 1431, Ås, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Borg-Karlson</LastName>
<ForeName>Anna-Karin</ForeName>
<Initials>AK</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000439">Pentanols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010675">Pheromones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SH64HE46L9</RegistryNumber>
<NameOfSubstance UI="C027250">3-hydroxy-3-methylbutene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001517" MajorTopicYN="N">Coleoptera</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000439" MajorTopicYN="N">Pentanols</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010675" MajorTopicYN="N">Pheromones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bluestain fungi</Keyword>
<Keyword MajorTopicYN="N">Plant-insect-microbe interactions</Keyword>
<Keyword MajorTopicYN="N">Scolytinae</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>08</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26302987</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-015-0617-3</ArticleId>
<ArticleId IdType="pii">10.1007/s10886-015-0617-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2011 Jun 10;286(23 ):20582-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21504898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2011 Dec;37(12):1374-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22161224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1975 Mar 13;254(5496):136-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">804144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1976 Jan 16;191(4223):199-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1246609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Aug;167(2):353-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1990 Apr;16(4):1385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24263735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Jul;39(7):840-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23793954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Aug 14;213(4509):763-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17834584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2010 Oct;40(10):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1984 Sep;10(9):1349-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24317586</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<country name="Suède">
<region name="Svealand">
<name sortKey="Zhao, Tao" sort="Zhao, Tao" uniqKey="Zhao T" first="Tao" last="Zhao">Tao Zhao</name>
</region>
<name sortKey="Axelsson, Karolin" sort="Axelsson, Karolin" uniqKey="Axelsson K" first="Karolin" last="Axelsson">Karolin Axelsson</name>
<name sortKey="Borg Karlson, Anna Karin" sort="Borg Karlson, Anna Karin" uniqKey="Borg Karlson A" first="Anna-Karin" last="Borg-Karlson">Anna-Karin Borg-Karlson</name>
</country>
<country name="Norvège">
<noRegion>
<name sortKey="Krokene, Paal" sort="Krokene, Paal" uniqKey="Krokene P" first="Paal" last="Krokene">Paal Krokene</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000178 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000178 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26302987
   |texte=   Fungal Symbionts of the Spruce Bark Beetle Synthesize the Beetle Aggregation Pheromone 2-Methyl-3-buten-2-ol.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26302987" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020